
图1 MDFP-Net网络结构
近日,中国科学院西安光机所空间光学技术研究室在计算成像可解释性深度学习重建方法研究取得创新性进展。相关研究成果发表于计算机视觉与图形学领域国际著名期刊Computational Visual Media(简称CMVJ,IF:17.3),该期刊影响因子位居JCR计算机学科软件工程类期刊首位。西安光机所李宝鹏高级工程师为论文第一作者,西安光机所马彩文研究员和西安交通大学谢琦副教授为共同通信作者。西安光机所樊学武研究员、赵惠研究员、高伟研究员、杨明洋研究助理,西安交通大学潘志斌教授和孟德宇教授为合作者。论文的第一完成单位为中国科学院西安光机所,通讯单位为中国科学院西安光机所和西安交通大学。
傅里叶叠层成像是一种新兴的计算成像技术,其成像的正向模型包括光瞳函数的低通滤波、光瞳在频域内的扫描采样、傅里叶变换和复杂的成像噪声污染。传统基于深度神经网络学习(如卷积神经网络)方法在远距离场景下,环境噪声干扰更为复杂,高分辨率图像重建难度显著增加。
对此,研究团队创新性地提出了一种融合可学习正则化项的优化模型,结合近端梯度优化算法,为构建可解释的深度学习模型奠定理论基础。基于此,团队设计出全新模型驱动的傅里叶叠层重建网络(MDFP-Net),MDFP-Net为首个通过复数域与实数域交替迭代优化,将振幅流重建算法嵌入网络结构的深度可展开网络,有效实现了振幅的重构。MDFP-Net的各模块设计具有明晰的物理意义,使傅里叶叠层重建过程的所有模块均具备可解释性,显著提升了深度学习在计算成像中的理论合理性与计算成像性能。
图2 不同方法仿真图像重建结果

图3 实验场景
图4 不同方法8.7m真实场景重建结果
为验证MDFP-Net在实现高质量和快速重建方面的有效性,研究团队开发了一套远距离反射式傅里叶叠层成像系统,顺利完成了8.7m外真实样本数据采集。研究成果在既推动了傅里叶叠层成像技术的认知深化,也通过创新性地融合深度学习与计算成像方法,为计算光学成像的研究提供了新的技术思路,未来有望突破更远距离成像场景限制,有为遥感等领域应用提供技术支撑的潜力。
研究得到中国科学院西部青年学者项目和超快光科学与技术全国重点实验室开放基金的资助。
西安光机所空间光学技术研究室始终紧密围绕国家重大工程需求,专注于高分辨率成像技术的深入研究。研究室继承并发展了传统的高分辨率相机技术,积极探索新型高分辨率成像技术、相位恢复和深度学习等前沿科技领域。
审核编辑 黄宇
- 随机文章
- 热门文章
- 热评文章
- 纳芯微高压半桥驱动芯片NSD2622N产品介绍
- 多圈绝对值编码器:工业精度的“隐形守护者”
- 未来汽车智能配电架构的需求与解决方案
- -20℃冷启动稳定记录!深视智能SHS系列高速相机精准捕捉冰块断裂全程
- 开疆智能Ethernet/IP转Modbus网关连接斯巴拓压力传感器配置案例
- PCB扇孔设计必知:原则与注意事项,让设计更高效!
- 华为发布HiSec Endpoint三合一终端安全防护系统,获国际权威Tolly机构认证
- 开疆智能Ethernet/IP转Modbus网关连接变频器配置案例
- 智能化环网柜局放监测方案:构建配电网的智慧之眼
- 12025北京中轴线文化遗产传承与创新大赛启动
- 2工业通信“搭桥匠”!Ethernet IP转ModbusTCP网关助保护测控器畅通“数据动脉”
- 3“跨省异地”就医如何直接报销?官方教程来了
- 4开疆智能ModbusTCP转Canopen网关连接汇川AM403PLC与编码器配置案例
- 5普源信号发生器DG5072的模拟调制与数字调制对比
- 624亿元,6家传感器公司被A股龙头买走!
- 7普源DHO4404示波器USB信号测试
- 8如何进行光纤布放
- 9从"听见"到"秒懂",Leion Hey2如何重新定义跨语言沟通新标准?
- 1can转Profinet网关转换:S7-1200PLC与施耐德变频器间的通信实现
- 2MOS管在电源控制中的应用:正负极驱动原理与设计要点
- 3面壁小钢炮模型MiniCPM4.0发布,端侧智能更进一步
- 4开疆智能Ethernet/IP转Modbus网关连接质量流量计配置案例
- 5开疆智能Ethernet/IP转Modbus网关连接西门子BW500积算仪配置案例
- 6热泵与空调全面跨入SiC碳化硅功率半导体时代:能效革命与产业升级
- 7国产RTC芯片加速迭代:±2ppm超高精度、更低功耗
- 8高通斥资数亿美元收购Autotalks公司,推进车联网部署
- 9芯资讯|唯创电子WTU201F2 B004 红外接近模块:开启卫生间冲水箱智能洁净新时代